Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.11.29.470440

RESUMO

We assessed if immune responses are enhanced in CD-1 mice by heterologous vaccination with two different nucleic acid-based COVID-19 vaccines: a next-generation human adenovirus serotype 5 (hAd5)-vectored dual-antigen spike (S) and nucleocapsid (N) vaccine (AdS+N) and a self-amplifying and -adjuvanted S RNA vaccine (SASA S) delivered by a nanostructured lipid carrier. The AdS+N vaccine encodes S modified with a fusion motif to increase cell-surface expression. The N antigen is modified with an Enhanced T-cell Stimulation Domain (N-ETSD) to direct N to the endosomal/lysosomal compartment to increase the potential for MHC class I and II stimulation. The S sequence in the SASA S vaccine comprises the D614G mutation, two prolines to stabilize S in the prefusion conformation, and 3 glutamines in the furin cleavage region to increase cross-reactivity across variants. CD-1 mice received vaccination by prime > boost homologous and heterologous combinations. Humoral responses to S were the highest with any regimen including the SASA S vaccine, and IgG against wild type S1 and Delta (B.1.617.2) variant S1 was generated at similar levels. An AdS+N boost of an SASA S prime enhanced both CD4+ and CD8+ T-cell responses to both S wild type and S Delta peptides relative to all other vaccine regimens. Sera from mice receiving SASA S homologous or heterologous vaccination were found to be highly neutralizing of all pseudovirus tested: Wuhan, Delta, and Beta strain pseudoviruses. The findings here support the clinical testing of heterologous vaccination by an SASA S > AdS+N regimen to provide increased protection against COVID-19 and SARS-CoV-2 variants.


Assuntos
Síndrome Respiratória Aguda Grave , COVID-19
2.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.09.14.460356

RESUMO

The increasing prevalence of SARS-CoV-2 variants with the ability to escape existing humoral protection conferred by previous infection and/or immunization necessitates the discovery of broadly-reactive neutralizing antibodies (nAbs). Utilizing mRNA display, we identified a set of antibodies against SARS-CoV-2 spike (S) proteins and characterized the structures of nAbs that recognized epitopes in the S1 subunit of the S glycoprotein. These structural studies revealed distinct binding modes for several antibodies, including targeting of rare cryptic epitopes in the receptor-binding domain (RBD) of S that interacts with angiotensin- converting enzyme 2 (ACE2) to initiate infection, as well as the S1 subdomain 1. A potent ACE2-blocking nAb was further engineered to sustain binding to S RBD with the E484K and L452R substitutions found in multiple SARS-CoV-2 variants. We demonstrate that mRNA display is a promising approach for the rapid identification of nAbs that can be used in combination to combat emerging SARS-CoV-2 variants.


Assuntos
Síndrome Respiratória Aguda Grave
3.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.03.22.436476

RESUMO

In response to the need for an efficacious, thermally-stable COVID-19 vaccine that can elicit both humoral and cell-mediated T-cell responses, we have developed a dual-antigen human adenovirus serotype 5 (hAd5) COVID-19 vaccine in formulations suitable for subcutaneous (SC), intranasal (IN), or oral delivery. The vaccine expresses both the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins using an hAd5 platform with E1, E2b, and E3 sequences deleted; hAd5(E1-, E2b-, E3-); that is effective even in the presence of hAd5 immunity. In the vaccine, S is modified (S-Fusion) for enhanced cell surface display to elicit humoral responses and N is modified with an Enhanced T-cell Stimulation Domain (N-ETSD) to direct N to the endosomal/lysosomal pathway to increase MHC I and II presentation. Initial studies using subcutaneous (SC) prime and SC boost vaccination of CD-1 mice demonstrated that the hAd5 S-Fusion + N-ETSD vaccine elicits T-helper cell 1 (Th1) dominant T-cell and humoral responses to both S and N. We then compared SC to IN prime vaccination with either an SC or IN boost post-SC prime and an IN boost after IN prime. These studies reveal that IN prime/IN boost is as effective at generating Th1 dominant humoral responses to both S and N as the other combinations, but that the SC prime with either an IN or SC boost elicits greater T cell responses. In a third study to assess the power of the two routes of delivery when used together, we used a combined SC plus IN prime with or without a boost and found the combined prime alone to be as effective as the combined prime with either an SC or IN boost in generating both humoral and T-cell responses. The findings here in CD-1 mice demonstrate that combined SC and IN prime-only delivery has the potential to provide broad immunity, including mucosal immunity, against SARS-CoV-2 and supports further testing of this delivery approach in additional animal models and clinical trials.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
4.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.03.09.434641

RESUMO

The highly-transmissible SARS-CoV-2 variants now replacing the first wave strain pose an increased threat to human health by their ability, in some instances, to escape existing humoral protection conferred by previous infection, neutralizing antibodies, and possibly vaccination. Thus, other therapeutic options are necessary. One such therapeutic option that leverages SARS-CoV-2 initiation of infection by binding of its spike receptor binding domain (S RBD) to surface-expressed host cell angiotensin-converting enzyme 2 (ACE2) is an ACE2 decoy that would trap the virus by competitive binding and thus inhibit propagation of infection. Here, we used Molecular Dynamic (MD) simulations to predict ACE2 mutations that might increase its affinity for S RBD and screened these candidates for binding affinity in vitro. A double mutant ACE2(T27Y/H34A)-IgG1FC fusion protein was found to have very high affinity for S RBD and to show greater neutralization of SARS-CoV-2 in a live virus assay as compared to wild type ACE2. We further modified the double mutant ACE2 decoy by addition of an H374N mutation to inhibit ACE2 enzymatic activity while maintaining high S RBD affinity. We then confirmed the potential efficacy of our ACE2(T27Y/H34A/H374N)-IgG1FC Triple Decoy against S RBD expressing variant-associated E484K, K417N, N501Y, and L452R mutations and found that our ACE2 Triple Decoy not only maintains its high affinity for S RBD expressing these mutations, but shows enhanced affinity for S RBD expressing the N501Y or L452R mutations and the highest affinity for S RBD expressing both the E484K and N501Y mutations. The ACE2 Triple Decoy also demonstrates the ability to compete with wild type ACE2 in the cPass surrogate virus neutralization in the presence of S RBD with these mutations. Additional MD simulation of ACE2 WT and decoy interactions with S RBD WT or B.1.351 variant sequence S RBD provides insight into the enhanced affinity of the ACE2 decoy for S RBD and reveals its potential as a tool to predict affinity and inform therapeutic design. The ACE2 Triple Decoy is now undergoing continued assessment, including expression by a human adenovirus serotype 5 (hAd5) construct to facilitate delivery in vivo. Summary sentenceAn ACE2(N27Y/H34A/H374N)-IgG1FC fusion protein decoy sustains high affinity to all SARS-CoV-2 spike receptor binding domain (RBD) protein variants tested, shows enhanced affinity for the N501Y and L452R variants, and the highest affinity for combined N501Y and E484K variants.

5.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.01.13.426558

RESUMO

Rapidly spreading SARS-CoV-2 variants present not only an increased threat to human health due to the confirmed greater transmissibility of several of these new strains but, due to conformational changes induced by the mutations, may render first-wave SARS-CoV-2 convalescent sera, vaccine-induced antibodies, or recombinant neutralizing antibodies (nAbs) ineffective. To be able to assess the risk of viral escape from neutralization by first-wave antibodies, we leveraged our capability for Molecular Dynamic (MD) simulation of the spike receptor binding domain (S RBD) and its binding to human angiotensin-converting enzyme 2 (hACE2) to predict alterations in molecular interactions resulting from the presence of the E484K, K417N, and N501Y variants found in the South African 501Y.V2 strain - alone and in combination. We report here the combination of E484K, K417N and N501Y results in the highest degree of conformational alterations of S RBD when bound to hACE2, compared to either E484K or N501Y alone. Both E484K and N501Y increase affinity of S RBD for hACE2 and E484K in particular switches the charge on the flexible loop region of RBD which leads to the formation of novel favorable contacts. Enhanced affinity of S RBD for hACE2 very likely underpins the greater transmissibility conferred by the presence of either E484K or N501Y; while the induction of conformational changes may provide an explanation for evidence that the 501Y.V2 variant, distinguished from the B.1.1.7 UK variant by the presence of E484K, is able to escape neutralization by existing first-wave anti-SARS-CoV-2 antibodies and re-infect COVID-19 convalescent individuals.


Assuntos
COVID-19
6.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.12.11.422055

RESUMO

The Receptor Binding Domain (RBD) of the SARS-CoV-2 surface spike (S) protein interacts with host angiotensin converting enzyme 2 (ACE2) to gain entry to host cells and initiate infection1-3. Detailed, accurate understanding of key interactions between S RBD and ACE2 provides critical information that may be leveraged in the development of strategies for the prevention and treatment of COVID-19. Utilizing the published sequences and cryo-EM structures of both the viral S RBD and ACE24,5, we performed in silico molecular dynamics (MD) simulations of free S RBD and of its interaction with ACE2 over the exceptionally long durations of 2.9 and 2 milliseconds, respectively, to elucidate the nature and relative affinity of S RBD surface residues for the ACE2 binding region. Our findings reveal that free S RBD has assumed an optimized ACE2 binding-ready conformation, incurring little entropic penalty for binding, an evolutionary adaptation that contributes to its high affinity for the receptor6. We further identified high probability molecular binding interactions that inform both vaccine design and therapeutic development, which may include recombinant ACE2-based spike decoys7 and/or allosteric S RBD-ACE2 binding inhibitors8,9 to prevent or arrest infection and thus disease.


Assuntos
COVID-19 , Parada Cardíaca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA